If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+1.2x+15=0
a = -4.9; b = 1.2; c = +15;
Δ = b2-4ac
Δ = 1.22-4·(-4.9)·15
Δ = 295.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.2)-\sqrt{295.44}}{2*-4.9}=\frac{-1.2-\sqrt{295.44}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.2)+\sqrt{295.44}}{2*-4.9}=\frac{-1.2+\sqrt{295.44}}{-9.8} $
| 40-5y=85 | | X(x+14)=48 | | 7x-10=3(x-2) | | (16r)^20=0 | | 0.0024^x=0.5 | | 0=3x^2+18x-220 | | 8z-7=3z-7=5z | | 8(1)+10(1)+6(1)-11x(1)=-54(1)+12x(1) | | x/50=0.7 | | 3+6x+27=60 | | x+90+90+76.5=360 | | x+90+90+76.5=180 | | -4x+1-2x=7 | | 4(x−5)=20 | | −3x−5=13 | | x+6=6(x-17) | | (x-2)-12=0 | | -x2+5x-3=0 | | 13x+15=5x | | 3(x+40)=5x-18 | | 5x+21=2x+38 | | 3(x+4)=(2x-1) | | x2+3x-7=0 | | 3(5x+2)=-4(2x-5) | | 2y^2+5y+8=0 | | 5(x+2)+3=38 | | 4(3x-9)=18-12x | | -2/7a+4=-6 | | 2.1y=5.6 | | 7/8-x=13/16 | | 7/8-x=3/10 | | 3×(0.2)^(m-1)=10 |